
Dynamically Proving That Security Issues Exist

Andrew V. Jones, Vector Software, Inc.
NIST SwMM-RSV, July 2016

© 2016 Vector Software, Inc. All Rights Reserved. 1/19



Focus of this talk

Chess & McGraw’04¹:

Good static checkers can help spot and eradicate
common security bugs

Therefore (for the purposes of this talk!):

• If we find an instance of a CWE, it is a vulnerability!
• If it crashes the software, it can be a security issue

• SIGSEGV⇒ DoS!

¹see: https://www.computer.org/csdl/mags/sp/2004/06/j6076.pdf

© 2016 Vector Software, Inc. All Rights Reserved. 2/19

https://www.computer.org/csdl/mags/sp/2004/06/j6076.pdf


Focus of this talk

Chess & McGraw’04¹:

Good dynamic analysers can help spot and eradicate
common security bugs

Therefore (for the purposes of this talk!):

• If we find an instance of a CWE, it is a vulnerability!
• If it crashes the software, it can be a security issue

• SIGSEGV⇒ DoS!

¹see: https://www.computer.org/csdl/mags/sp/2004/06/j6076.pdf

© 2016 Vector Software, Inc. All Rights Reserved. 2/19

https://www.computer.org/csdl/mags/sp/2004/06/j6076.pdf


A tale of two customers…

Customer A

• We have some testing of open source projects
• Can you find any issues?
• Display issues

Customer B

• VectorCAST performed automated test-case generation
• Can you find any issues?
• Fuzzing of test-cases
• Display issues

© 2016 Vector Software, Inc. All Rights Reserved. 3/19



What did they want?

The view from the trenches

• Binary – do we have any issues? Yes or no!
• Count – how many?
• Identification – what and where are they?

© 2016 Vector Software, Inc. All Rights Reserved. 4/19



So how did it work?

Crash-test generation

• Take a test that allocates a pointer
• Remove the alloc
• Run it
• Does it crash?
• If yes: potential weakness!

© 2016 Vector Software, Inc. All Rights Reserved. 5/19



Caveat emptor

• This is white-box unit testing – not black-box “Dynamic
Application Security Testing” (DAST)!

• We can only find defects in what we can deduce a test for
• Not trying to solve the halting problem – things can slip through
our net

• Aiming for soundness (if we say it is a bug, it is a bug); no
chance of completeness

• We can’t catch every bug because some are infeasible to generate
unit tests for automatically

© 2016 Vector Software, Inc. All Rights Reserved. 6/19



Example

Example from lighttpd (v1.4.20; v1.4.18 in SATE’08)

1 int buffer_copy_string_buffer(buffer *b, const buffer *src) {
2 if (!src) return -1;
3

4 if (src->used == 0) {
5 b->used = 0;
6 return 0;
7 }
8 return buffer_copy_string_len(b, src->ptr, src->used - 1);
9 }

• Not detected: CppCheck, Facebook’s Infer, Uno
• Possible error: Lint, CodeHawk
• SIGSEGV: VectorCAST!

© 2016 Vector Software, Inc. All Rights Reserved. 7/19



Results from SARD

• Took the null pointer issues from the Software Assurance
Reference Dataset² (“vulnerable” C test-suite)

• Found 6 out of 7 issues
• We didn’t find (null_deref_local_flow-bad.c):

1 /* SNIP */
2

3 char k = 'a';
4 char* p = (char*)NULL;
5

6 switch (k)
7 {
8 case 0:
9 k = *p; /* FLAW */
10

11 /* SNIP */

²see: https://samate.nist.gov/SARD/

© 2016 Vector Software, Inc. All Rights Reserved. 8/19

https://samate.nist.gov/SARD/


Benefits

Static analysis might not detect it

• False-positives are high – is it a real error?
• False-negatives exist – maybe they didn’t show it?

Dynamic execution
• We don’t claim to detect everything

• “happy” to have false-negatives

• If we do find something, it is definitely an issue!
• You can fix the issue, and re-generate and re-execute that test:
if the error goes away, that issue is fixed!

• With static analysis, you might have just hidden the error under a
false-negative!

© 2016 Vector Software, Inc. All Rights Reserved. 9/19



Vulnerabilities of interest

Automatic identification for CWE-398 (“ indication of poor code
quality”)

• Anything with “hard” errors
• Use of a null pointer (CWE-476)
• Buffer {under,over}flow (stack corruption) (CWE-124)
• Divide by zero (CWE-369)

• VectorCAST supports stubbing⇒ detection of
• Mismatched calls – malloc/free, fopen/fclose,
pthread_mutex_lock/pthread_mutex_unlock
(CWE-401/404/413/415/590)

• Bad arguments – memcpy (CWE-120/130)
• Unchecked return – malloc (CWE-252)

© 2016 Vector Software, Inc. All Rights Reserved. 10/19



What are we aiming for?

• Source of tests (pick one!)
• Take existing tests + code coverage data
• Symbolic execution data for test-case generation

• Source of defects (pick one!)
• Static analysis data (from $YOUR_FAVOURITE_SA_ENGINE)
• Symbolic execution data for vulnerabilities

• Generate
• Fuzz’d tests or tests to cover vulnerabilities

• Execute tests
• Detect vulnerabilities

© 2016 Vector Software, Inc. All Rights Reserved. 11/19



What are we aiming for?

• Source of tests (pick one!)
• Take existing tests + code coverage data
• Symbolic execution data for test-case generation

• Source of defects (pick one!)
• Static analysis data (from $YOUR_FAVOURITE_SA_ENGINE)
• Symbolic execution data for vulnerabilities

• Generate
• Fuzz’d tests or tests to cover vulnerabilities

• Execute tests
• Detect vulnerabilities

© 2016 Vector Software, Inc. All Rights Reserved. 11/19



Metrics

I thought this was a talk on metrics?!

“actionable intelligence”

© 2016 Vector Software, Inc. All Rights Reserved. 12/19



Towards “application security”

Process³

1. Identify portfolio
2. Assess vulnerabilities
3. Manage risk

Some of the issues we find you might consider are “non-issues” or
are mitigated against as part of your software architecture

• That’s great…
• …be wary about software re-use across projects!

³see: https://www.rsaconference.com/writable/presentations/file_upload/asec-w25.pdf

© 2016 Vector Software, Inc. All Rights Reserved. 13/19

https://www.rsaconference.com/writable/presentations/file_upload/asec-w25.pdf


Easy metrics

An approach to ascertaining quickly Chess’s “Morningstar for
Software Security”⁴

• ☆☆ – “absence of obvious reliability issues”

The easy ones

• Defect density
• Defects/SLoC

• Lines free from obvious issues (via code coverage)
• Confidence of “defect freedom” (but not guaranteed!)

• Ratio of security tests free of defects
• Higher ratio⇒ more secure

⁴see: http://www.securitymetrics.org/attachments/Metricon-2-Lee-Chess-Enterprise-Metrics.ppt

© 2016 Vector Software, Inc. All Rights Reserved. 14/19

http://www.securitymetrics.org/attachments/Metricon-2-Lee-Chess-Enterprise-Metrics.ppt


More involved metrics

• Exploit depth (from how many levels can we trigger it?)
• Akin to a linear “attack graph”
• More steps⇒ high critically

• Criticality (e.g., things that crash vs. things that don’t)
• Assess the risk using CWRAF/CWSS
• SIGSEGV ≫ missing free

• Correlation between function complexity and number of defects
• High complexity and number of defects⇒ higher risk

• Percentage breakdown of metrics by type/grouping
• Attack surface⁵ (e.g., defect via params vs. return from stub)

• Clearly serious if it is via a stub of recv!

⁵see: http://www.cs.cmu.edu/~pratyus/tse10.pdf

© 2016 Vector Software, Inc. All Rights Reserved. 15/19

http://www.cs.cmu.edu/~pratyus/tse10.pdf


Sample metrics for null pointer defects

Project
Metric lighttpd zlib libxml2

Version 1.4.20 1.2.8 2.9.4
# files 89 16 84
SLoC⁶ 36,605 6,726 184,179
Unique # issues 709 113 2,926
Defect density (defects/line) 1/52 1/60 1/63
Avg. # of tests per defect 11 7 12
Tests hitting defects 69% 28% 40%
Funct’s with defects 44% 44% 29%
Funct’s with vg ≥ 20 and defects⁷ 51% 55% 66%

⁶measured with cloc
⁷Jones’08: “[complexity] levels greater than 20 are considered hazardous”

© 2016 Vector Software, Inc. All Rights Reserved. 16/19



Future metrics

• Number of vulnerabilities that are already “guarded” (e.g., if a
pointer passes through some pointer test but still crashes)

• Similar to disregarding issues if they are guarded by “intrusion
protection systems”⁸

• Build a correlation to predict the vulnerability of a package⁹:
• Extract a characteristic of the software for version n
• Extract a vulnerability metric from the software for version n
• Use characteristics of n + 1 to predict vulnerabilities in n + 1

⁸see: http://www.securitymetrics.org/attachments/Metricon-1-Epstein-Software.ppt
⁹see: http://www.securitymetrics.org/attachments/Metricon-5-Massacci-Firefox-Vulnerabilities.pdf

© 2016 Vector Software, Inc. All Rights Reserved. 17/19

http://www.securitymetrics.org/attachments/Metricon-1-Epstein-Software.ppt
http://www.securitymetrics.org/attachments/Metricon-5-Massacci-Firefox-Vulnerabilities.pdf


Take-home

Mainly: no “one size fits all” solution – use multiple tools!

• Dynamic execution can find certain vulnerabilities more
definitively

• Need to always consider DP-E ratio (damage potential vs. effort)
• A number of metrics

• Not necessarily specific to dynamic execution – also relevant to
the output of a static analyser

• Future work: how can metrics be used to predict vulnerability

© 2016 Vector Software, Inc. All Rights Reserved. 18/19



Fin.

Questions?

andrew.jones@vectorcast.com

© 2016 Vector Software, Inc. All Rights Reserved. 19/19

mailto:andrew.jones@vectorcast.com

